Isometric deformation invariant 3D shape recognition

نویسندگان

  • Dirk Smeets
  • Jeroen Hermans
  • Dirk Vandermeulen
  • Paul Suetens
چکیده

Intra-shape deformations complicate 3D shape recognition and therefore need proper modeling. Thereto, an isometric deformation model is used in this paper. The method proposed does not need explicit point correspondences for the comparison of 3D shapes. The geodesic distance matrix is used as an isometry-invariant shape representation. Two approaches are described to arrive at a sampling order invariant shape descriptor: the histogram of geodesic distance matrix values and the set of largest singular values of the geodesic distance matrix. Shape comparison is performed by comparison of the shape descriptors using the w2-distance as dissimilarity measure. For object recognition, the results obtained demonstrate the singular value approach to outperform the histogram-based approach, as well as the state-of-the-art multidimensional scaling technique, the ICP baseline algorithm and other isometric deformation modeling methods found in literature. Using the TOSCA database, a rank-1 recognition rate of 100% is obtained for the identification scenario, while the verification experiments are characterized by a 1.58% equal error rate. External validation demonstrates that the singular value approach outperforms all other participants for the non-rigid object retrieval contests in SHREC 2010 as well as SHREC 2011. For 3D face recognition, the rank-1 recognition rate is 61.9% and the equal error rate is 11.8% on the BU-3DFE database. This decreased performance is attributed to the fact that the isometric deformation assumption only holds to a limited extent for facial expressions. This is also demonstrated in this paper. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3d Face Recognition under Isometric Expression Deformations

In this paper, 3D face recognition under isometric deformation (induced by facial expressions) is considered. The main objective is to employ the shape descriptors that are invariant to (isometric) deformations to provide an efficient face recognition algorithm. Two methods of the correspondence are utilized for automatic landmark assignment to the query face. One is based on the conventional i...

متن کامل

3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface

Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...

متن کامل

Robust 3D Face Recognition by Using Shape Filtering

Achieving high accuracy in the presence of expression variation remains one of the most challenging aspects of 3D face recognition. In this paper, we propose a novel recognition approach for robust and efficient matching. The framework is based on shape processing filters that divide face into three components according to its frequency spectral. Low-frequency band mainly corresponds to express...

متن کامل

Template-Based Conformal Shape-from-Motion from Registered Laparoscopic Images

One of the current limits of laparosurgery is the absence of a 3D vision facility for standard laparoscopes. While there has been significant progress made in visual SLAM (Simultaneous Localization And Mapping) with a single camera, most of the current approaches relies on the assumption that the tissues are rigid or undergo a cyclic deformation. However, in laparoscopic surgery none of these a...

متن کامل

Intrinsic Regularity Detection in 3D Geometry

Automatic detection of symmetries, regularity, and repetitive structures in 3D geometry is a fundamental problem in shape analysis and pattern recognition with applications in computer vision and graphics. Especially challenging is to detect intrinsic regularity, where the repetitions are on an intrinsic grid, without any apparent Euclidean pattern to describe the shape, but rising out of (near...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012